計(jì)算機(jī)專業(yè)時(shí)文選讀(980)

軟考 責(zé)任編輯:iemeila 2005-10-19

添加老師微信

備考咨詢

加我微信

摘要:SubatomicpropertieswillremakecomputingImagineadatastoragedevicethesizeofanatom,workingatthespeedoflight.Imagineamicroprocessorwhosecircuitscouldbechangedonthefly.Oneminute,itwouldbeoptimizedfordatabaseaccess,thenextfortransactionprocessingandthenextf

Subatomic properties will remake computing

Imagine a data storage device the size of an atom, working at the speed of light. Imagine a microprocessor whose circuits could be changed on the fly. One minute, it would be optimized for database access, the next for transaction processing and the next for scientific number-crunching.

Finally, imagine a computer memory thousands of times denser and faster than today’s memories. And nonvolatile, so it retains its contents when the power is off.

All of these and more are on computing’s horizon, thanks to the exploding field of spintronics. Spintronics isn’t entirely new. The spintronic effect called giant magneto-resistance was introduced by IBM in 1997 in its GMR disk-read head. As a result, disk capacities have jumped by a factor of 100 in the past five years.

Electronic circuits are driven by electron flows, which have a charge that can be measured and controlled. But electrons not only flow; they also spin like tiny bar magnets. Depending on their orientation, the spins are said to be “up” or “down.” This additional variable, or “degree of freedom,” means that electrons can do more things and convey more information than they do in conventional electronics.

The most immediate research goal is to produce magnetic random-access memory (MRAM), which stores data using magnetism rather than electrical charges. Unlike the dynamic RAM in your PC, MRAM is nonvolatile.

IBM is working with Munich-based Infineon Technologies AG and says it will have MRAM in production as early as 2005. It will be 50 times faster than DRAM and 10 times denser than static RAM, and it could eventually replace both.

Others have even suggested that MRAM might replace disks for data storage. Putting logic and storage in a single chip would eliminate the slow disk I/O that’s a bottleneck in most computer processing.

IBM’s MRAM will use magnetic tunnel junctions, an application of spintronics in which electrons are allowed to “tunnel” between two ferromagnetic layers based on their spin. Each junction can store one bit. It promises a sort of universal RAM with very high performance —— high writing and reading speeds —— plus very high density and nonvolatility.

Further out, researchers are working on still more exotic applications of spin. David Awschalom, director of the Center for Spintronics and Quantum Computation at the University of California, Santa Barbara, is looking at what might be done with the spin of an atom’s nucleus, a new idea.

“The subatomic part of the atom would store the information, and the electron would act as the bus to carry information in and out of the nuclear subsystem,” Awschalom says.

He aims to build an optical-based information processor in which beams of light would transfer information to the nucleus through electrons. Such nuclear memories would be “many orders of magnitude” denser and faster than traditional semiconductor memories, he says.

Indeed, more broadly, the thrust of spintronics research will be to combine electronics and photonics with magnetism —— which traditionally involves metals —— in semiconductor materials. That will enable ultrafast and ultraefficient submicron devices that integrate computing, communications and storage. The slow interfaces between different materials that convert one kind of signal or property into another would be gone, and the latencies that typically slow the movement of data from one processing stage to another would be greatly reduced.

“You’d have everything integrated in a much simpler circuit,” says DARPA’s Wolf. “They would be much like existing semiconductor devices, except the current is spin-polarized.” That would enable, for example, the construction of very fast communication switches. “You could call it spin photonics,” he says. “They can easily operate at terahertz speeds.”

A semiconductor device can’t use spin until a way is found to get spin-polarized electrons into it, and that has proved difficult. But IBM recently demonstrated that it can use magnetic tunnel junctions to inject the current, as they do for MRAM.

IBM’s Parkin says spintronic semiconductors could be used to build reconfigurable logic devices. “So maybe your computer could be optimized for certain instructions by rearranging the way [logic] gates are connected, on the fly,” he says.

Another tough challenge has been to create magnetic semiconductors that sustain their spin states at room temperature, but physicists, materials scientists and engineers have made tremendous progress on that front just this year. The rapid development of spintronics seems likely to continue. The theory is in quite sound shape. There are many challenges, though.

亞原子特性將重構(gòu)計(jì)算

想像一下數(shù)據(jù)存儲(chǔ)裝置只有原子大小、并以光速工作。再想像一下微處理器的電路能飛快地修改。只需一分鐘,就完成對(duì)數(shù)據(jù)庫(kù)訪問的優(yōu)化,接下來(lái)對(duì)交易處理優(yōu)化,接著再對(duì)科學(xué)計(jì)算優(yōu)化。

最后再想像一下計(jì)算機(jī)的存儲(chǔ)器比今天的存儲(chǔ)器的密度和速度都要提高幾千倍。而且是非易失的,因此斷電時(shí)它仍能保存內(nèi)容。

由于旋轉(zhuǎn)電子學(xué)研究的爆炸性進(jìn)展,所有這些以及更多的新技術(shù)已經(jīng)出現(xiàn)在計(jì)算的地平線了。旋轉(zhuǎn)電子學(xué)不全是新東西。早在1997年IBM在其GMR磁盤的讀出頭中引入了稱作巨型磁阻的旋轉(zhuǎn)電子效應(yīng)。結(jié)果在過去的五年中,磁盤的容量提高了100倍。

電子電路是由電子的流動(dòng)驅(qū)動(dòng)的,它們擁有可測(cè)量可控制的電荷。但是,電子不僅流動(dòng),而且像微小的磁鐵那樣會(huì)旋轉(zhuǎn)。依據(jù)它們的取向,旋轉(zhuǎn)被說成“上”或者“下”。這個(gè)額外的變量,或“自由度”,意味著電子可以做比常規(guī)電子電路中更多的事和傳送更多的信息。

最直接的研究目標(biāo)就是生產(chǎn)磁隨機(jī)存取存儲(chǔ)器(MRAM),它利用磁學(xué)原理而不是電荷來(lái)儲(chǔ)存數(shù)據(jù)。與PC機(jī)中的動(dòng)態(tài)RAM不同,MRAM是非易失的。

IBM正在與慕尼黑的Infineon技術(shù)公司合作,據(jù)稱,最早在2005年就能生產(chǎn)出MRAM。它比DRAM快50倍,比靜態(tài)RAM的密度高10倍,最終它能替代這兩種存儲(chǔ)器。

還有人認(rèn)為,MRAM可能替代磁盤做數(shù)據(jù)存儲(chǔ)。將邏輯電路和存儲(chǔ)放在同一芯片中,能消除慢速的磁盤I/O,這可是多數(shù)計(jì)算機(jī)處理中的瓶頸。

IBM的MRAM利用了磁隧道結(jié),它應(yīng)用了旋轉(zhuǎn)電子學(xué),其中電子被允許“隧道”穿過兩層基于旋轉(zhuǎn)的鐵磁層。每個(gè)結(jié)能儲(chǔ)存一位。它有望成為一種極高性能的通用RAM,即高的讀寫速度加上極高的密度和非易失性。

研究人員還在進(jìn)一步開發(fā)旋轉(zhuǎn)的更神奇應(yīng)用。加州大學(xué)圣巴巴拉分校旋轉(zhuǎn)電子學(xué)和量子計(jì)算中心主任David Awschalom正在研究利用原子核的旋轉(zhuǎn)能做些什么。

他說:“原子的亞原子部分(即原子核——譯者注)存儲(chǔ)信息,而電子起到運(yùn)送信息進(jìn)出原子核子系統(tǒng)的作用?!?/P>

他的目標(biāo)是制造基于光學(xué)的信息處理器,其中光束通過電子向原子核傳送信息。他說,這樣的核存儲(chǔ)器比傳統(tǒng)的半導(dǎo)體存儲(chǔ)器在密度和速度上要高出很多量級(jí)。

實(shí)際上從更廣義的角度,旋轉(zhuǎn)電子學(xué)研究的迅猛進(jìn)展將會(huì)在半導(dǎo)體材料中把電子學(xué)和光子學(xué)與磁學(xué)結(jié)合起來(lái),而傳統(tǒng)上這些學(xué)科只涉及金屬。這將實(shí)現(xiàn)極快的、極高效的亞微米器件,將計(jì)算、通信和存儲(chǔ)結(jié)合在一起。不同材料之間的慢速界面(將一種信號(hào)或特性轉(zhuǎn)換成另一種)將一去不返,通常會(huì)使數(shù)據(jù)從一個(gè)處理階段過渡到另一階段步伐放慢的反應(yīng)時(shí)間也將大大縮短。

美國(guó)國(guó)防高級(jí)研究計(jì)劃局(DARPA)的Wolf說:“你將所有的東西都集成在簡(jiǎn)單得多的電路中,它們除了電流是旋轉(zhuǎn)-極化的外,很像現(xiàn)在的半導(dǎo)體器件。”例如,它們可以搭建極快速的通信交換機(jī)。他說:“你可以把它叫做旋轉(zhuǎn)光電學(xué)。它們很容易工作在太赫茲的速度。”

半導(dǎo)體器件不能利用旋轉(zhuǎn),除非找到辦法把旋轉(zhuǎn)極化電子放進(jìn)去,業(yè)已證明這是一件困難的事。但是最近IBM演示了能利用磁隧道結(jié)將電流注入進(jìn)去,如同他們?cè)跒镸RAM所做的那樣。

IBM的Parkin稱,旋轉(zhuǎn)電子學(xué)半導(dǎo)體可以用于制造可配置的邏輯器件。他說:“通過飛快地重新安排(邏輯)門電路連接的方式,計(jì)算機(jī)有可能針對(duì)某些指令進(jìn)行優(yōu)化。”

另一個(gè)嚴(yán)峻的挑戰(zhàn)是生成能在室溫下保持旋轉(zhuǎn)狀態(tài)的磁半導(dǎo)體。但在今年,物理學(xué)家、材料科學(xué)家和工程師們?cè)谶@方面取得了長(zhǎng)足的進(jìn)步。旋轉(zhuǎn)電子學(xué)的快速發(fā)展有可能繼續(xù)下去,理論已經(jīng)很完善,盡管還有很多挑戰(zhàn)。

更多課程
更多真題
溫馨提示:因考試政策、內(nèi)容不斷變化與調(diào)整,本網(wǎng)站提供的以上信息僅供參考,如有異議,請(qǐng)考生以權(quán)威部門公布的內(nèi)容為準(zhǔn)!

軟考備考資料免費(fèi)領(lǐng)取

去領(lǐng)取

距離考試還有
  • 1
  • 1
  • 4
軟考題庫(kù) 我的題庫(kù)
專注在線職業(yè)教育24年

項(xiàng)目管理

信息系統(tǒng)項(xiàng)目管理師

廠商認(rèn)證

信息系統(tǒng)項(xiàng)目管理師

信息系統(tǒng)項(xiàng)目管理師

學(xué)歷提升

!
咨詢?cè)诰€老師!