摘要:本文是2022年江西服裝學(xué)院高職單招《數(shù)學(xué)》考試大綱,單招數(shù)學(xué)科試卷的命題,將遵循“考查基礎(chǔ)知識(shí)的同時(shí),注重考查能力”的原則,更多詳情請(qǐng)見下文。
一、考試性質(zhì)
江西服裝學(xué)院(高職教育)單招考試(以下簡稱單考)是合格的高中畢業(yè)生和具有同等學(xué)力的考生參加的選拔性考試。學(xué)校根據(jù)考生成績,按已確定的招生計(jì)劃,德、智、體等全面衡量,擇優(yōu)錄取。因此,單考應(yīng)具有較高的信度、效度,必要的區(qū)分度和適當(dāng)?shù)碾y度。
二、命題指導(dǎo)思想
江西服裝學(xué)院(高職教育)單招數(shù)學(xué)科試卷的命題,將遵循“考查基礎(chǔ)知識(shí)的同時(shí),注重考查能力”的原則,確立以能力立意的命題指導(dǎo)思想,將知識(shí)、能力和素質(zhì)融為一體,全面檢測考生的數(shù)學(xué)素養(yǎng)和考生進(jìn)入高等學(xué)校繼續(xù)學(xué)習(xí)的潛能,有利于高校人才的選拔和中學(xué)素質(zhì)教育的實(shí)施。
數(shù)學(xué)科考試要發(fā)揮數(shù)學(xué)作為主要基礎(chǔ)學(xué)科的作用,要考查考生數(shù)學(xué)的基礎(chǔ)知識(shí)、基本技能和數(shù)學(xué)思想方法,考查考生的數(shù)學(xué)基本能力應(yīng)用意識(shí)和創(chuàng)新意識(shí),考查考生對(duì)數(shù)學(xué)本質(zhì)的理解,體現(xiàn)《課程標(biāo)準(zhǔn)》中對(duì)知識(shí)與技能、過程與方法、情感態(tài)度與價(jià)值觀等目標(biāo)的要求。
試卷保持相對(duì)穩(wěn)定,適度創(chuàng)新,既體現(xiàn)新課程理念,又繼承和發(fā)揚(yáng)歷年高考數(shù)學(xué)命題的成果和經(jīng)驗(yàn),逐步形成“立意鮮明,背景新穎,設(shè)問靈活,層次清晰”的特色。
三、考核目標(biāo)與要求
(一)知識(shí)要求
知識(shí)是指《課程標(biāo)準(zhǔn)》所規(guī)定的必修課程、選修課程系列1和系列4中的數(shù)學(xué)概念、性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映的數(shù)學(xué)思想方法,還包括按照一定程序與步驟進(jìn)行運(yùn)算,處理數(shù)據(jù)、繪制圖表等基本技能。
各部分知識(shí)的整體要求及其定位參照《課程標(biāo)準(zhǔn)》相應(yīng)模塊的有關(guān)說明。對(duì)知識(shí)的要求依次是了解、理解、掌握三個(gè)層次。
1.了解:要求對(duì)所列知識(shí)的含義有初步的、感性的認(rèn)識(shí),知道這一知識(shí)內(nèi)容是什么,按照一定的程序和步驟照樣模仿,并能(或會(huì))在有關(guān)的問題中識(shí)別和認(rèn)識(shí)它。
這一層次所涉及的主要行為動(dòng)詞有:了解,知道、識(shí)別,模仿,會(huì)求、會(huì)解等。
2.理解:要求對(duì)所列知識(shí)內(nèi)容有較深刻的理性認(rèn)識(shí),知道知識(shí)間的邏輯關(guān)系,能夠?qū)λ兄R(shí)作正確的描述說明并用數(shù)學(xué)語言表達(dá),能夠利用所學(xué)的知識(shí)內(nèi)容對(duì)有關(guān)問題作比較、判別、討論,具備利用所學(xué)知識(shí)解決簡單問題的能力。
這一層次所涉及的主要行為動(dòng)詞有:描述,說明,表達(dá)、表示,推測、想象,比較、判別、判斷,初步應(yīng)用等。
3.掌握:要求能夠?qū)λ械闹R(shí)內(nèi)容能夠推導(dǎo)證明,利用所學(xué)知識(shí)對(duì)問題能夠進(jìn)行分析、研究、討論,并且加以解決。
這一層次所涉及的主要行為動(dòng)詞有:掌握、導(dǎo)出、分析,推導(dǎo)、證明,研究、討論、運(yùn)用、解決問題等。
(二)能力要求
能力是指空間想像能力、抽象概括能力、推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力以及應(yīng)用意識(shí)和創(chuàng)新意識(shí)。
1.空間想像能力:能根據(jù)條件作出正確的圖形,根據(jù)圖形想象出直觀形象;能正確地分析出圖形中基本元素及其相互關(guān)系;能對(duì)圖形進(jìn)行分解、組合;會(huì)運(yùn)用圖形與圖表等手段形象地揭示問題的本質(zhì)。
空間想象能力是對(duì)空間形式的觀察、分析、抽象的能力,主要表現(xiàn)為識(shí)圖、畫圖和對(duì)圖形的想象能力。 識(shí)圖是指觀察研究所給圖形中幾何元素之間的相互關(guān)系;畫圖是指將文字語言和符合語言轉(zhuǎn)化為圖形語言以及對(duì)圖形添加輔助圖形或圖形進(jìn)行各種變換;對(duì)圖形的想象主要包括有圖想圖和無圖想圖兩種,是空間想象能力高層次的標(biāo)志。
2.抽象概括能力:抽象是指舍棄事物非本質(zhì)的屬性,揭示其本質(zhì)的屬性;概括是指把僅僅屬于某一類對(duì)象的共同屬性區(qū)分出來的思維過程。抽象和概括是相互聯(lián)系的,沒有抽象就不可能有概括,而概括必須在抽象的基礎(chǔ)上得出某種觀點(diǎn)或某個(gè)結(jié)論。
抽象概括能力是對(duì)具體的、生動(dòng)的實(shí)例,在抽象概括的過程中,發(fā)現(xiàn)研究對(duì)象的本質(zhì);從給定的大量信息材料中,概括出一些結(jié)論,并能應(yīng)用于解決問題或作出新的判斷。
3.推理論證能力:推理是思維的基本形式之一,它由前提和結(jié)論兩部分組成;論證是由已有的正確的前提到被論證的結(jié)論的一連串的推理過程.推理包括合情推理和演繹推理,論證方法既包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法.一般運(yùn)用合情推理進(jìn)行猜想,再運(yùn)用演繹推理進(jìn)行證明。
中學(xué)數(shù)學(xué)的推理論證能力是根據(jù)已知的事實(shí)和已獲得的正確數(shù)學(xué)命題,論證某一數(shù)學(xué)命題真實(shí)性的初步的推理能力。
4.運(yùn)算求解能力:會(huì)根據(jù)法則、公式進(jìn)行正確運(yùn)算、變形和數(shù)據(jù)處理,能根據(jù)問題的條件尋找與設(shè)計(jì)合理、簡捷的運(yùn)算途徑;能根據(jù)要求對(duì)數(shù)據(jù)進(jìn)行估計(jì)和近似計(jì)算。
運(yùn)算求解能力是思維能力和運(yùn)算技能的結(jié)合。 運(yùn)算包括對(duì)數(shù)字的計(jì)算、估值和近似計(jì)算,對(duì)式子的組合變形與分解變形,對(duì)幾何圖形各幾何量的計(jì)算求解等。運(yùn)算能力包括分析運(yùn)算條件、探究運(yùn)算方向、選擇運(yùn)算公式、確定運(yùn)算程序等一系列過程中的思維能力,也包括在實(shí)施運(yùn)算過程中遇到障礙而調(diào)整運(yùn)算的能力。
5.數(shù)據(jù)處理能力:會(huì)收集、整理、分析數(shù)據(jù),能從大量數(shù)據(jù)中抽取對(duì)研究問題有用的信息,并作出判斷。
數(shù)據(jù)處理能力主要依據(jù)統(tǒng)計(jì)或統(tǒng)計(jì)案例中的方法對(duì)數(shù)據(jù)進(jìn)行整理、分析,并解決給定的實(shí)際問題。
6.應(yīng)用意識(shí):能綜合應(yīng)用所學(xué)數(shù)學(xué)知識(shí)、思想和方法解決問題,包括解決在相關(guān)學(xué)科、生產(chǎn)、生活中簡單的數(shù)學(xué)問題;能理解對(duì)問題陳述的材料,并對(duì)所提供的信息資料進(jìn)行歸納、整理和分類,將實(shí)際問題抽象為數(shù)學(xué)問題,建立數(shù)學(xué)模型;應(yīng)用相關(guān)的數(shù)學(xué)方法解決問題并加以驗(yàn)證,并能用數(shù)學(xué)語言正確地表達(dá)和說明。應(yīng)用的主要過程是依據(jù)現(xiàn)實(shí)的生活背景,提煉相關(guān)的數(shù)量關(guān)系,將現(xiàn)實(shí)問題轉(zhuǎn)化為數(shù)學(xué)問題,構(gòu)造數(shù)學(xué)模型,并加以解決。
7.創(chuàng)新意識(shí):能發(fā)現(xiàn)問題、提出問題,綜合與靈活地應(yīng)用所學(xué)的數(shù)學(xué)知識(shí)、思想方法,選擇有效的方法和手段分析信息,進(jìn)行獨(dú)立的思考、探索和研究,提出解決問題的思路,創(chuàng)造性地解決問題。
創(chuàng)新意識(shí)是理性思維的高層次表現(xiàn)。對(duì)數(shù)學(xué)問題的“觀察、猜測、抽象、概括、證明”,是發(fā)現(xiàn)問題和解決問題的重要途徑,對(duì)數(shù)學(xué)知識(shí)的遷移、組合、融會(huì)的程度越高,顯示出的創(chuàng)新意識(shí)也就越強(qiáng)。
(三)個(gè)性品質(zhì)要求
個(gè)性品質(zhì)是指考生個(gè)體的情感、態(tài)度和價(jià)值觀。要求考生具有一定的數(shù)學(xué)視野,認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值和人文價(jià)值,崇尚數(shù)學(xué)的理性精神,形成審慎的思維習(xí)慣,體會(huì)數(shù)學(xué)的美學(xué)意義。
要求考生克服緊張情緒,以平和的心態(tài)參加考試,合理支配考試時(shí)間,以實(shí)事求是的科學(xué)態(tài)度解答試題,樹立戰(zhàn)勝困難的信心,體現(xiàn)鍥而不舍的精神。
(四)考查要求
數(shù)學(xué)學(xué)科的系統(tǒng)性和嚴(yán)密性決定了數(shù)學(xué)知識(shí)之間深刻的內(nèi)在聯(lián)系,包括各部分知識(shí)的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些聯(lián)系,進(jìn)而通過分類、梳理、綜合,構(gòu)建數(shù)學(xué)試卷的框架結(jié)構(gòu)。
1.對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查,既要全面又要突出重點(diǎn),對(duì)于支撐學(xué)科知識(shí)體系的重點(diǎn)內(nèi)容,要占有較大的比例,構(gòu)成數(shù)學(xué)試卷的主體,注重學(xué)科的內(nèi)在聯(lián)系和知識(shí)的綜合性,不刻意追求知識(shí)的覆蓋面。從學(xué)科的整體高度和思維價(jià)值的高度考慮問題,在知識(shí)網(wǎng)絡(luò)交匯點(diǎn)設(shè)計(jì)試題,使對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查達(dá)到必要的深度。
2.對(duì)數(shù)學(xué)思想方法的考查對(duì)數(shù)學(xué)知識(shí)在更高層次上的抽象和概括的考查,考查時(shí)必須要與數(shù)學(xué)知識(shí)相結(jié)合,通過對(duì)數(shù)學(xué)知識(shí)的考查,反映考生對(duì)數(shù)學(xué)思想方法的掌握程度。
3.對(duì)數(shù)學(xué)能力的考查,強(qiáng)調(diào)“以能力立意”,就是以數(shù)學(xué)知識(shí)為載體,從問題入手,把握學(xué)科的整體意義,用統(tǒng)一的數(shù)學(xué)觀點(diǎn)組織材料。側(cè)重體現(xiàn)對(duì)知識(shí)的理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,以此來檢測考生將知識(shí)遷移到不同情境中去的能力,從而檢測出考生個(gè)體理性思維的廣度和深度以及進(jìn)一步學(xué)習(xí)的潛能。
對(duì)能力的考查要全面,強(qiáng)調(diào)綜合性、應(yīng)用性,并要切合考生實(shí)際。對(duì)推理論證能力和抽象概括能力的考查貫穿于全卷,是考查的重點(diǎn),強(qiáng)調(diào)其科學(xué)性、嚴(yán)謹(jǐn)性、抽象性;對(duì)空間想象能力的考查主要體現(xiàn)在對(duì)文字語言、符號(hào)語言及圖形語言的互相轉(zhuǎn)化上;對(duì)運(yùn)算求解能力的考查主要是對(duì)算法和推理的考查,考查以代數(shù)運(yùn)算為主;對(duì)數(shù)據(jù)處理能力的考查主要是考查運(yùn)用概率統(tǒng)計(jì)的基本方法和思想解決實(shí)際問題的能力。
4.對(duì)應(yīng)用意識(shí)的考查主要采用解決應(yīng)用問題的形式。命題時(shí)要堅(jiān)持“貼近生活,背景公平,控制難度”的原則,試題設(shè)計(jì)要切合中學(xué)數(shù)學(xué)教學(xué)的實(shí)際和考生的年齡特點(diǎn),并結(jié)合實(shí)踐經(jīng)驗(yàn),使數(shù)學(xué)應(yīng)用問題的難度符合考生的水平。
5.對(duì)創(chuàng)新意識(shí)的考查時(shí)對(duì)高層次理性思維的考查.在考試中創(chuàng)設(shè)新穎的問題情境,構(gòu)造有一定深度和廣度的數(shù)學(xué)問題時(shí),要注重問題的多樣化,體現(xiàn)思維的發(fā)散性;精心設(shè)計(jì)考查數(shù)學(xué)主體內(nèi)容、體現(xiàn)數(shù)學(xué)素質(zhì)的試題;也要有反映數(shù)、形運(yùn)動(dòng)變化的試題以及研究型、探索型、開放型等類型的試題。
數(shù)學(xué)科的命題,在考查基礎(chǔ)知識(shí)的基礎(chǔ)上,注重對(duì)數(shù)學(xué)思維方法的考查,注重對(duì)數(shù)學(xué)能力的考查,展現(xiàn)數(shù)學(xué)的科學(xué)價(jià)值和人文價(jià)值,同時(shí)兼顧試題的基礎(chǔ)性、綜合性和現(xiàn)實(shí)性,重視試題間的層次性,合理調(diào)控綜合程度,堅(jiān)持多角度、多層次的考查,努力實(shí)現(xiàn)全面考查綜合數(shù)學(xué)素養(yǎng)的要求。
四、考試形式與試卷結(jié)構(gòu)
(一)考試形式
考試采用閉卷、筆試形式??荚嚂r(shí)間為60分鐘??荚嚥辉试S使用計(jì)算器。
(二)考試范圍
數(shù)學(xué)1(必修):集合、函數(shù)概念與基本初步等函數(shù)Ⅰ(指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù))。
數(shù)學(xué)2(必修):立體幾何初步、平面解析幾何初步。
數(shù)學(xué)3(必修):統(tǒng)計(jì)、概率。
數(shù)學(xué)4(必修):基本初等函數(shù)Ⅱ(三角函數(shù))、平面向量、三角恒等變換。
數(shù)學(xué)5(必修):解三角形、數(shù)列、不等式。
選修1—1:常用邏輯用語、圓錐曲線與方程。
選修1—2:復(fù)數(shù)的引入、框圖。
選修4—5:不等式選講。
(三)試卷結(jié)構(gòu)
1.試題類型
全卷滿分為100分,試卷結(jié)構(gòu)如下:
2.難度控制
試題按其難度分為容易題、中等難度題和難題.難度在0.7以上的試題為容易題,難度為0.4—0.7的試題是中等難度題,難度在0.4以下的試題為難題。三種難度的試題應(yīng)控制合適的分值比例,全卷難度控制適中。
五、具體考試內(nèi)容及其要求
(一)必考內(nèi)容與要求
1.集合
(1)集合的含義與表示
① 了解集合的含義、元素與集合的屬于關(guān)系。
② 能用自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題。
(2)集合間的基本關(guān)系
① 理解集合之間包含與相等的含義,能識(shí)別給定集合的子集。
② 在具體情境中,了解全集與空集的含義。
(3)集合的基本運(yùn)算
① 理解兩個(gè)集合的并集與交集的含義,會(huì)求兩個(gè)簡單集合的并集與交集。
② 理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集。
③ 能使用韋恩(Venn)圖表達(dá)集合間的基本關(guān)系及集合的基本運(yùn)算。
2.函數(shù)概念與基本初等函數(shù)Ⅰ
(1)函數(shù)
① 了解構(gòu)成函數(shù)的要素,會(huì)求一些簡單函數(shù)的定義域和值域;了解映射的概念。
② 在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒?如圖像法、列表法、解析法)表示函數(shù)。
③ 了解簡單的分段函數(shù),并能簡單應(yīng)用。
④ 理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義;結(jié)合具體函數(shù),了解函數(shù)奇偶性的含義。
⑤ 會(huì)運(yùn)用基本初等函數(shù)的圖像分析函數(shù)的性質(zhì)。
(2)指數(shù)函數(shù)
① 了解指數(shù)函數(shù)模型的實(shí)際背景。
② 理解有理指數(shù)冪的含義,了解實(shí)數(shù)指數(shù)冪的意義,掌握冪的運(yùn)算。
③ 理解指數(shù)函數(shù)的概念及其單調(diào)性,掌握指數(shù)函數(shù)圖像通過的特殊點(diǎn)。
④ 知道指數(shù)函數(shù)是一類重要的函數(shù)模型。
(3)對(duì)數(shù)函數(shù)
① 理解對(duì)數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式能將一般對(duì)數(shù)轉(zhuǎn)化成自然對(duì)數(shù)或常用對(duì)數(shù);了解對(duì)數(shù)在簡化運(yùn)算中的作用。
② 理解對(duì)數(shù)函數(shù)的概念及其單調(diào)性,掌握對(duì)數(shù)函數(shù)圖像通過的特殊點(diǎn)。
③ 體會(huì)對(duì)數(shù)函數(shù)是一類重要的函數(shù)模型。
④ 了解指數(shù)函數(shù)與對(duì)數(shù)函數(shù)(a>0,且a≠1)互為反函數(shù)。
(4)冪函數(shù)
① 了解冪函數(shù)的概念。
② 結(jié)合函數(shù)圖像,了解它們的變化情況。
(5)函數(shù)與方程
① 結(jié)合二次函數(shù)的圖像,了解函數(shù)的零點(diǎn)與方程根的聯(lián)系,判斷一元二次方程根的存在性及根的個(gè)數(shù)。
②根據(jù)具體函數(shù)的圖像,能夠用二分法求相應(yīng)方程的近似解。
(6)函數(shù)模型及其應(yīng)用
① 了解指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的增長特征,結(jié)合具體實(shí)例體會(huì)直線上升、指數(shù)增長、對(duì)數(shù)增長等不同函數(shù)類型增長的含義。
② 了解函數(shù)模型(如指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等在社會(huì)生活中普遍使用的函數(shù)模型)的廣泛應(yīng)用。
3.立體幾何初步
(1)空間幾何體
① 認(rèn)識(shí)柱、錐、臺(tái)、球及其簡單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡單物體的結(jié)構(gòu)。
② 能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)用斜二側(cè)法畫出它們的直觀圖。
③ 會(huì)用平行投影與中心投影兩種方法,畫出簡單空間圖形的三視圖與直觀圖,了解空間圖形的不同表示形式。
④了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式(不要求記憶公式)。
(2)點(diǎn)、直線、平面之間的位置關(guān)系
① 理解空間直線、平面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理。
◆公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)在此平面內(nèi)。
◆公理2:過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。
◆公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。
◆公理4:平行于同一條直線的兩條直線互相平行。
◆定理:空間中如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等或互補(bǔ)。
② 以立體幾何的上述定義、公理和定理為出發(fā)點(diǎn),認(rèn)識(shí)和理解空間中線面平行、垂直的有關(guān)性質(zhì)與判定定理。
理解以下判定定理。
◆如果平面外一條直線與此平面內(nèi)的一條直線平行,那么該直線與此平面平行。
◆如果一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面都平行,那么這兩個(gè)平面平行。
◆如果一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,那么該直線與此平面垂直。
◆如果一個(gè)平面經(jīng)過另一個(gè)平面的垂線,那么這兩個(gè)平面互相垂直。
理解以下性質(zhì)定理,并能夠證明。
◆如果一條直線與一個(gè)平面平行,經(jīng)過該直線的任一個(gè)平面與此平面的交線和該直線平行。
◆如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線相互平行。
◆垂直于同一個(gè)平面的兩條直線平行。
◆如果兩個(gè)平面垂直,那么一個(gè)平面內(nèi)垂直于它們交線的直線與另一個(gè)平面垂直。
③ 能運(yùn)用公理、定理和已獲得的結(jié)論證明一些空間圖形的位置關(guān)系的簡單命題。
4.平面解析幾何初步
(1)直線與直線方程
① 在平面直角坐標(biāo)系中,結(jié)合具體圖形,確定直線位置的幾何要素。
② 理解直線的傾斜角和斜率的概念,掌握過兩點(diǎn)的直線斜率的計(jì)算公式。
③ 能根據(jù)兩條直線的斜率判定這兩條直線平行或垂直。
④ 掌握確定直線位置的幾何要素,掌握直線方程的幾種形式(點(diǎn)斜式、兩點(diǎn)式及一般式),了解斜截式與一次函數(shù)的關(guān)系。
⑤ 能用解方程組的方法求兩直線的交點(diǎn)坐標(biāo)。
⑥ 掌握兩點(diǎn)間的距離公式、點(diǎn)到直線的距離公式,會(huì)求兩條平行直線間的距離。
(2)圓與方程
① 掌握確定圓的幾何要素,掌握?qǐng)A的標(biāo)準(zhǔn)方程與一般方程。
② 能根據(jù)給定直線、圓的方程,判斷直線與圓的位置關(guān)系;能根據(jù)給定兩個(gè)圓的方程,判斷兩圓的位置關(guān)系。
③ 能用直線和圓的方程解決一些簡單的問題。
④ 初步了解用代數(shù)方法處理幾何問題的思想。
(3)空間直角坐標(biāo)系
① 了解空間直角坐標(biāo)系,會(huì)用空間直角坐標(biāo)表示點(diǎn)的位置。
② 會(huì)推導(dǎo)空間兩點(diǎn)間的距離公式。
5.統(tǒng)計(jì)
(1)隨機(jī)抽樣
① 理解隨機(jī)抽樣的必要性和重要性。
② 會(huì)用簡單隨機(jī)抽樣方法從總體中抽取樣本;了解分層抽樣和系統(tǒng)抽樣方法。
(2)用樣本估計(jì)總體
① 了解分布的意義和作用,會(huì)列頻率分布表,會(huì)畫頻率分布直方圖、頻率折線圖,理解它們各自的特點(diǎn)。
② 理解樣本數(shù)據(jù)標(biāo)準(zhǔn)差的意義和作用,會(huì)計(jì)算數(shù)據(jù)標(biāo)準(zhǔn)差(不要求記憶公式)。
③ 能從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標(biāo)準(zhǔn)差),并給出合理的解釋。
④ 會(huì)用樣本的頻率分布估計(jì)總體分布,會(huì)用樣本的基本數(shù)字特征估計(jì)總體的基本數(shù)字特征,理解用樣本估計(jì)總體的思想。
⑤ 會(huì)用隨機(jī)抽樣的基本方法和樣本估計(jì)總體的思想,解決一些簡單的實(shí)際問題。
6.概率
(1)事件與概率
① 了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義,了解頻率與概率的區(qū)別。
② 了解兩個(gè)互斥事件的概率加法公式。
(2)古典概型
① 理解古典概型及其概率計(jì)算公式。
② 會(huì)計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率。
7.基本初等函數(shù)Ⅱ(三角函數(shù))
(1)任意角的概念、弧度制
① 了解任意角的概念。
② 了解弧度制概念,能進(jìn)行弧度與角度的互化。
(2)三角函數(shù)
① 理解任意角三角函數(shù)(正弦、余弦、正切)的定義。
② 能利用單位圓中的三角函數(shù)線推導(dǎo)出正弦、余弦、正切的誘導(dǎo)公式,能畫出相關(guān)圖像,了解三角函數(shù)的周期性。
③ 理解正弦函數(shù)、余弦函數(shù)在區(qū)間[0,2π]的性質(zhì)(如單調(diào)性、最大和最小值以及與軸交點(diǎn)等)。理解正切函數(shù)單調(diào)性。
④ 理解同角三角函數(shù)的基本關(guān)系式。
⑤ 會(huì)用三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,會(huì)用三角函數(shù)解決一些簡單實(shí)際問題。
8.平面向量
(1)平面向量的實(shí)際背景及基本概念
①了解向量的實(shí)際背景。
②理解平面向量的概念,理解兩個(gè)向量相等的含義。
③理解向量的幾何表示。
(2)向量的線性運(yùn)算
① 掌握向量加法、減法的運(yùn)算,并理解其幾何意義。
② 掌握向量數(shù)乘的運(yùn)算及其意義,理解兩個(gè)向量共線的含義。
③ 了解向量線性運(yùn)算的性質(zhì)及其幾何意義。
(3)平面向量的基本定理及坐標(biāo)表示
① 了解平面向量的基本定理及其意義。
② 掌握平面向量的正交分解及其坐標(biāo)表示。
③ 會(huì)用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運(yùn)算。
④ 理解用坐標(biāo)表示的平面向量共線的條件。
(4)平面向量的數(shù)量積
① 理解平面向量數(shù)量積的含義及其物理意義。
② 了解平面向量的數(shù)量積與向量投影的關(guān)系。
③ 掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量數(shù)量積的運(yùn)算。
④ 能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系。
(5)向量的應(yīng)用
①會(huì)用向量方法解決某些簡單的平面幾何問題。
②會(huì)用向量方法解決簡單的力學(xué)問題與其他一些實(shí)際問題。
9.三角恒等變換
(1)兩角和與差的三角函數(shù)公式
① 會(huì)用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式。
② 會(huì)用兩角差的余弦公式導(dǎo)出兩角差的正弦、正切公式。
③ 會(huì)用兩角差的余弦公式導(dǎo)出兩角和的正弦、余弦、正切公式,導(dǎo)出二倍角的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系。
(2)簡單的三角恒等變換
能運(yùn)用上述公式進(jìn)行簡單的恒等變換(包括導(dǎo)出積化和差、和差化積、半角公式,但對(duì)這三組公式不要求記憶)。
10.解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)應(yīng)用
能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測量和幾何計(jì)算有關(guān)的實(shí)際問題。
11.數(shù)列
(1)數(shù)列的概念和簡單表示法
①了解數(shù)列的概念和幾種簡單的表示方法(列表、圖像、通項(xiàng)公式)。
②了解數(shù)列是自變量為正整數(shù)的一類函數(shù)。
(2)等差數(shù)列、等比數(shù)列
① 理解等差數(shù)列、等比數(shù)列的概念。
② 掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式。
③ 能在具體的問題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題。
④ 了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系。
12.不等式
(1)不等關(guān)系
了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景。
(2)一元二次不等式
① 會(huì)從實(shí)際情境中抽象出一元二次不等式模型。
② 通過函數(shù)圖像了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系。
③ 會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖。
(3)二元一次不等式組與簡單線性規(guī)劃問題
① 會(huì)從實(shí)際情境中抽象出二元一次不等式組。
② 了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組。
③ 會(huì)從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決。
(4)基本不等式:
① 了解基本不等式的證明過程。
② 會(huì)用基本不等式解決簡單的最大(小)值問題。
13.常用邏輯用語
① 理解命題的概念。
②了解“若p,則q”形式的命題的逆命題、否命題與逆否命題,會(huì)分析四種命題的相互關(guān)系。
③ 理解必要條件、充分條件與充要條件的意義。
④了解邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義。
⑤ 理解全稱量詞與存在量詞的意義。
⑥ 能正確地對(duì)含有一個(gè)量詞的命題進(jìn)行否定。
14.圓錐曲線與方程
① 了解圓錐曲線的實(shí)際背景,了解圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用。
② 掌握橢圓的定義、幾何圖形、標(biāo)準(zhǔn)方程和簡單幾何性質(zhì)。
③ 了解雙曲線的定義、拋物線、幾何圖形和標(biāo)準(zhǔn)方程,知道其簡單的幾何性質(zhì)。
④ 理解數(shù)形結(jié)合的思想。
⑤ 了解圓錐曲線的簡單應(yīng)用。
15.復(fù)數(shù)的引入
①理解復(fù)數(shù)的基本概念,理解復(fù)數(shù)相等的充要條件。
②了解復(fù)數(shù)的代數(shù)表示法及其幾何意義。
③ 會(huì)進(jìn)行復(fù)數(shù)代數(shù)形式的四則運(yùn)算,了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義。
16.框圖
① 了解程序框圖。
② 了解工序流程圖(即統(tǒng)籌圖)。
③ 能繪制簡單實(shí)際問題的流程圖,了解流程圖在解決實(shí)際問題中的作用。
④了解結(jié)構(gòu)圖。
⑤會(huì)運(yùn)用結(jié)構(gòu)圖梳理已學(xué)過的知識(shí)、整理收集到的資料信息。
17.不等式選講
① 理解絕對(duì)值的幾何意義,并了解下列不等式成立的幾何意義及取等號(hào)的條件:
|a+b|≤|a|+|b| (a,b∈R);
|a-b|≤|a-c|+|c-b|(a,b∈R)。
②會(huì)利用絕對(duì)值的幾何意義求解以下類型的不等式:
|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c。
③ 通過一些簡單問題了解證明不等式的基本方法:比較法、綜合法、分析法、放縮法。
熱門文章推薦>>
2022年山東高職單招和綜合評(píng)價(jià)招生考試大綱信息匯總
2022年全國高職單招志愿填報(bào)時(shí)間及入口匯總
考試內(nèi)容 /去年分?jǐn)?shù)線 /去年真題 /報(bào)名條件
2022年單招課程來襲,適合人群:基礎(chǔ)差,面試經(jīng)驗(yàn)匱乏考生,趕緊來看>>
共收錄117.93萬道題
已有25.02萬小伙伴參與做題