摘要:成考有三種報(bào)考層次,其中報(bào)考了高起點(diǎn)的考生,都要考《數(shù)學(xué)》科目。數(shù)學(xué)題最考驗(yàn)學(xué)生的邏輯思維能力,這就需要考生在平時(shí)多加練習(xí)。今天我們就先來(lái)看看2021年成人高考高起點(diǎn)數(shù)學(xué)考前復(fù)習(xí)資料12,希望能幫助到大家。
2021年成人高考高起點(diǎn)數(shù)學(xué)考前復(fù)習(xí)資料12
點(diǎn)擊查看更多>>成人高考高起點(diǎn)數(shù)學(xué)考前復(fù)習(xí)資料
函數(shù)值域及求法
函數(shù)的值域及其求法是近幾年高考考查的重點(diǎn)內(nèi)容之一.本節(jié)主要幫助考生靈活掌握求值域的各種方法,并會(huì)用函數(shù)的值域解決實(shí)際應(yīng)用問(wèn)題.
●難點(diǎn)磁場(chǎng)
(★★★★★)設(shè)m是實(shí)數(shù),記M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ ).
(1)證明:當(dāng)m∈M時(shí),f(x)對(duì)所有實(shí)數(shù)都有意義;反之,若f(x)對(duì)所有實(shí)數(shù)x都有意義,則m∈M.
(2)當(dāng)m∈M時(shí),求函數(shù)f(x)的最小值.
(3)求證:對(duì)每個(gè)m∈M,函數(shù)f(x)的最小值都不小于1.
●案例探究
[例1]設(shè)計(jì)一幅宣傳畫,要求畫面面積為4840 cm2,畫面的寬與高的比為λ(λ<1),畫面的上、下各留8 cm的空白,左右各留5 cm空白,怎樣確定畫面的高與寬尺寸,才能使宣傳畫所用紙張面積最小?如果要求λ∈[ ],那么λ為何值時(shí),能使宣傳畫所用紙張面積最小?
命題意圖:本題主要考查建立函數(shù)關(guān)系式和求函數(shù)最小值問(wèn)題,同時(shí)考查運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題的能力,屬★★★★★級(jí)題目.
知識(shí)依托:主要依據(jù)函數(shù)概念、奇偶性和最小值等基礎(chǔ)知識(shí).
錯(cuò)解分析:證明S(λ)在區(qū)間[ ]上的單調(diào)性容易出錯(cuò),其次不易把應(yīng)用問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題來(lái)解決.
技巧與方法:本題屬于應(yīng)用問(wèn)題,關(guān)鍵是建立數(shù)學(xué)模型,并把問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題來(lái)解決.
解:設(shè)畫面高為x cm,寬為λx cm,則λx2=4840,設(shè)紙張面積為S cm2,則S=(x+16)(λx+10)=λx2+(16λ+10)x+160,將x= 代入上式得:S=5000+44 (8 + ),當(dāng)8 = ,即λ= <1)時(shí)S取得最小值.此時(shí)高:x= =88 cm,寬:λx= ×88=55 cm.
如果λ∈[ ]可設(shè) ≤λ1<λ2≤ ,則由S的表達(dá)式得:
又 ≥ ,故8- >0,
∴S(λ1)-S(λ2)<0,∴S(λ)在區(qū)間[ ]內(nèi)單調(diào)遞增.
從而對(duì)于λ∈[ ],當(dāng)λ= 時(shí),S(λ)取得最小值.
答:畫面高為88 cm,寬為55 cm時(shí),所用紙張面積最小.如果要求λ∈[ ],當(dāng)λ= 時(shí),所用紙張面積最小.
[例2]已知函數(shù)f(x)= ,x∈[1,+∞ (1)當(dāng)a= 時(shí),求函數(shù)f(x)的最小值.
(2)若對(duì)任意x∈[1,+∞ ,f(x)>0恒成立,試求實(shí)數(shù)a的取值范圍.
命題意圖:本題主要考查函數(shù)的最小值以及單調(diào)性問(wèn)題,著重于學(xué)生的綜合分析能力以及運(yùn)算能力,屬★★★★級(jí)題目.
知識(shí)依托:本題主要通過(guò)求f(x)的最值問(wèn)題來(lái)求a的取值范圍,體現(xiàn)了轉(zhuǎn)化的思想與分類討論的思想.
錯(cuò)解分析:考生不易考慮把求a的取值范圍的問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題來(lái)解決.
技巧與方法:解法一運(yùn)用轉(zhuǎn)化思想把f(x)>0轉(zhuǎn)化為關(guān)于x的二次不等式;解法二運(yùn)用分類討論思想解得.
(1)解:當(dāng)a= 時(shí),f(x)=x+ +2
∵f(x)在區(qū)間[1,+∞ 上為增函數(shù),
∴f(x)在區(qū)間[1,+∞ 上的最小值為f(1)= .
(2)解法一:在區(qū)間[1,+∞ 上,f(x)= >0恒成立 x2+2x+a>0恒成立.
設(shè)y=x2+2x+a,x∈[1,+∞ ∵y=x2+2x+a=(x+1)2+a-1遞增,
∴當(dāng)x=1時(shí),ymin=3+a,當(dāng)且僅當(dāng)ymin=3+a>0時(shí),函數(shù)f(x)>0恒成立,故a>-3.
解法二:f(x)=x+ +2,x∈[1,+∞ 當(dāng)a≥0時(shí),函數(shù)f(x)的值恒為正;
當(dāng)a<0時(shí),函數(shù)f(x)遞增,故當(dāng)x=1時(shí),f(x)min=3+a,
當(dāng)且僅當(dāng)f(x)min=3+a>0時(shí),函數(shù)f(x)>0恒成立,故a>-3.
●錦囊妙計(jì)
本難點(diǎn)所涉及的問(wèn)題及解決的方法主要有:
(1)求函數(shù)的值域
此類問(wèn)題主要利用求函數(shù)值域的常用方法:配方法、分離變量法、單調(diào)性法、圖象法、換元法、不等式法等.無(wú)論用什么方法求函數(shù)的值域,都必須考慮函數(shù)的定義域.
(2)函數(shù)的綜合性題目
此類問(wèn)題主要考查函數(shù)值域、單調(diào)性、奇偶性、反函數(shù)等一些基本知識(shí)相結(jié)合的題目.
此類問(wèn)題要求考生具備較高的數(shù)學(xué)思維能力和綜合分析能力以及較強(qiáng)的運(yùn)算能力.在今后的命題趨勢(shì)中綜合性題型仍會(huì)成為熱點(diǎn)和重點(diǎn),并可以逐漸加強(qiáng).
(3)運(yùn)用函數(shù)的值域解決實(shí)際問(wèn)題
此類問(wèn)題關(guān)鍵是把實(shí)際問(wèn)題轉(zhuǎn)化為函數(shù)問(wèn)題,從而利用所學(xué)知識(shí)去解決.此類題要求考生具有較強(qiáng)的分析能力和數(shù)學(xué)建模能力.
相關(guān)閱讀:
相關(guān)推薦
鎖定考點(diǎn),突破難點(diǎn),2022年成人高考高效通過(guò)!點(diǎn)擊馬上聽課>>成考各科精講視頻教程
共收錄117.93萬(wàn)道題
已有25.02萬(wàn)小伙伴參與做題