摘要:下面是小編整理的一些2019年成人高考專升本《高數(shù)》必背資料匯總,希望能對各位小伙伴有所幫助。
下面是小編整理的一些2019年成人高考專升本《高數(shù)》必背資料匯總,希望能對各位小伙伴有所幫助。
(一)函數(shù)
1.知識范圍
(1)函數(shù)的概念
函數(shù)的定義 函數(shù)的表示法 分段函數(shù) 隱函數(shù)
(2)函數(shù)的性質(zhì)
單調(diào)性 奇偶性 有界性 周期性
(3)反函數(shù)
反函數(shù)的定義 反函數(shù)的圖像
(4)基本初等函數(shù)
冪函數(shù) 指數(shù)函數(shù) 對數(shù)函數(shù) 三角函數(shù) 反三角函數(shù)
(5)函數(shù)的四則運算與復合運算
(6)初等函數(shù)
2.要求
(1)理解函數(shù)的概念。會求函數(shù)的表達式、定義域及函數(shù)值。會求分段函數(shù)的定義域、函數(shù)值,會作出簡單的分段函數(shù)的圖像。
(2)理解函數(shù)的單調(diào)性、奇偶性、有界性和周期性。
(3)了解函數(shù) 與其反函數(shù) 之間的關系(定義域、值域、圖像),會求單調(diào)函數(shù)的反函數(shù)。
(4)熟練掌握函數(shù)的四則運算與復合運算。
(5)掌握基本初等函數(shù)的性質(zhì)及其圖像。
(6)了解初等函數(shù)的概念。
(7)會建立簡單實際問題的函數(shù)關系式。
(二)極限
1.知識范圍
(1)數(shù)列極限的概念
數(shù)列 數(shù)列極限的定義
(2)數(shù)列極限的性質(zhì)
唯一性 有界性 四則運算法則 夾逼定理 單調(diào)有界數(shù)列極限存在定理
(3)函數(shù)極限的概念
函數(shù)在一點處極限的定義 左、右極限及其與極限的關系 趨于無窮 時函數(shù)的極限 函數(shù)極限的幾何意義
(4)函數(shù)極限的性質(zhì)
唯一性 四則運算法則 夾通定理
(5)無窮小量與無窮大量
無窮小量與無窮大量的定義 無窮小量與無窮大量的關系 無窮小量的性質(zhì) 無窮小量的階
(6)兩個重要極限
2.要求
(1)理解極限的概念(對極限定義中“ ”、“ ”、“ ”等形式的描述不作要求)。會求函數(shù)在一點處的左極限與右極限,了解函數(shù)在一點處極限存在的充分必要條件。
(2)了解極限的有關性質(zhì),掌握極限的四則運算法則。
(3)理解無窮小量、無窮大量的概念,掌握無窮小量的性質(zhì)、無窮小量與無窮大量的關系。會進行無窮小量階的比較(高階、低階、同階和等價)。會運用等價無窮小量代換求極限。
(4)熟練掌握用兩個重要極限求極限的方法。
(三)連續(xù)
1.知識范圍
(1)函數(shù)連續(xù)的概念
函數(shù)在一點處連續(xù)的定義 左連續(xù)與右連續(xù) 函數(shù)在一點處連續(xù)的充分必要條件 函數(shù)的間斷點及其分類
(2)函數(shù)在一點處連續(xù)的性質(zhì)
連續(xù)函數(shù)的四則運算 復合函數(shù)的連續(xù)性 反函數(shù)的連續(xù)性
(3)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)
有界性定理 最大值與最小值定理 介值定理(包括零點定理)
(4)初等函數(shù)的連續(xù)性
2.要求
(1)理解函數(shù)在一點處連續(xù)與間斷的概念,理解函數(shù)在一點處連續(xù)與極限存在的關系,掌握判斷函數(shù)(含分段函數(shù))在一點處的連續(xù)性的方法。
(2)會求函數(shù)的間斷點及確定其類型。
(3)掌握在閉區(qū)間上連續(xù)函數(shù)的性質(zhì),會用介值定理推證一些簡單命題。
(4)理解初等函數(shù)在其定義區(qū)間上的連續(xù)性,會利用連續(xù)性求極限。
(四)定積分
1、知識范圍
(1)定積分的概念,定積分的定義及其幾何意義,可積條件
(2)定積分的性質(zhì)
(3)定積分的計算
變上限積分、牛頓—萊布尼茨(Newton-Leibniz)公式、換元積分法、分部積分法
(4)無窮區(qū)間的廣義積分
(5)定積分的應用
平面圖形的面積、旋轉(zhuǎn)體體積、物體沿直線運動時變力所作的功
2、要求
(1)理解定積分的概念及其幾何意義,了解函數(shù)可積的條件。
(2)掌握定積分的基本性質(zhì)。
(3)理解變上限積分是變上限的函數(shù),掌握對變上限定積分求導數(shù)的方法。
(4)熟練掌握牛頓—萊布尼茨公式。
(5)掌握定積分的換元積分法與分部積分法。
(6)理解無窮區(qū)間的廣義積分的概念,掌握其計算方法。
(7)掌握直角坐標系下用定積分計算平面圖形的面積以及平面圖形繞坐標軸旋轉(zhuǎn)所生成的旋轉(zhuǎn)體體積。
會用定積分求沿直線運動時變力所作的功。