2019年成人高考高起點(diǎn)數(shù)學(xué)(文科)難點(diǎn)講解

成人高考 責(zé)任編輯:胡燕 2020-03-30

摘要:關(guān)于2019年成人高考高起點(diǎn)數(shù)學(xué)(文科)難點(diǎn)講解有很多,下面主要是關(guān)于集合思想及應(yīng)用與運(yùn)用向量法解題,供大家參考。

關(guān)于2019年成人高考高起點(diǎn)數(shù)學(xué)(文科)難點(diǎn)講解有很多,下面主要是關(guān)于集合思想及應(yīng)用與運(yùn)用向量法解題,供大家參考。

難點(diǎn)1::集合思想及應(yīng)用

集合是高中數(shù)學(xué)的基本知識,為歷年必考內(nèi)容之一,主要考查對集合基本概念的認(rèn)識和理解,以及作為工具,考查集合語言和集合思想的運(yùn)用.本節(jié)主要是幫助考生運(yùn)用集合的觀點(diǎn),不斷加深對集合概念、集合語言、集合思想的理解與應(yīng)用.

●難點(diǎn)磁場

(★★★★★)已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠,求實(shí)數(shù)m的取值范圍.

●案例探究

[例1]設(shè)A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在k、b∈N,使得(A∪B)∩C=,證明此結(jié)論.

命題意圖:本題主要考查考生對集合及其符號的分析轉(zhuǎn)化能力,即能從集合符號上分辨出所考查的知識點(diǎn),進(jìn)而解決問題.屬★★★★★級題目.

知識依托:解決此題的閃光點(diǎn)是將條件(A∪B)∩C=轉(zhuǎn)化為A∩C=且B∩C=,這樣難度就降低了.

錯解分析:此題難點(diǎn)在于考生對符號的不理解,對題目所給出的條件不能認(rèn)清其實(shí)質(zhì)內(nèi)涵,因而可能感覺無從下手.

技巧與方法:由集合A與集合B中的方程聯(lián)立構(gòu)成方程組,用判別式對根的情況進(jìn)行限制,可得到b、k的范圍,又因b、k∈N,進(jìn)而可得值.

解:∵(A∪B)∩C=,∴A∩C=且B∩C=∵∴k2x2+(2bk-1)x+b2-1=0

∵A∩C=∴Δ1=(2bk-1)2-4k2(b2-1)<0

∴4k2-4bk+1<0,此不等式有解,其充要條件是16b2-16>0,即b2>1①

∵∴4x2+(2-2k)x+(5+2b)=0

∵B∩C=,∴Δ2=(1-k)2-4(5-2b)<0

∴k2-2k+8b-19<0,從而8b<20,即b<2.5②

由①②及b∈N,得b=2代入由Δ1<0和Δ2<0組成的不等式組,得

∴k=1,故存在自然數(shù)k=1,b=2,使得(A∪B)∩C=.

●錦囊妙計

1.解答集合問題,首先要正確理解集合有關(guān)概念,特別是集合中元素的三要素;對于用描述法給出的集合{x|x∈P},要緊緊抓住豎線前面的代表元素x以及它所具有的性質(zhì)P;要重視發(fā)揮圖示法的作用,通過數(shù)形結(jié)合直觀地解決問題.

2.注意空集的特殊性,在解題中,若未能指明集合非空時,要考慮到空集的可能性,如AB,則有A=或A≠兩種可能,此時應(yīng)分類討論.

難點(diǎn)2:運(yùn)用向量法解題

平面向量是新教材改革增加的內(nèi)容之一,近幾年的全國使用新教材的高考試題逐漸加大了對這部分內(nèi)容的考查力度,本節(jié)內(nèi)容主要是幫助考生運(yùn)用向量法來分析,解決一些相關(guān)問題.

●難點(diǎn)磁場

(★★★★★)三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC邊上的中線

AM的長;(2)∠CAB的平分線AD的長;(3)cosABC的值.

●案例探究

[例1]如圖,已知平行六面體ABCD—A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD.

2017年成人高考高起點(diǎn)文數(shù)考試章節(jié)難點(diǎn)解析(3)chengkao1.png

(1)求證:C1C⊥BD.

(2)當(dāng)?shù)闹禐槎嗌贂r,能使A1C⊥平面C1BD?請給出證明.

命題意圖:本題主要考查考生應(yīng)用向量法解決向量垂直,夾角等問題以及對立體幾何圖形的解讀能力.

知識依托:解答本題的閃光點(diǎn)是以向量來論證立體幾何中的垂直問題,這就使幾何問題代數(shù)化,使繁瑣的論證變得簡單.

錯解分析:本題難點(diǎn)是考生理不清題目中的線面位置關(guān)系和數(shù)量關(guān)系的相互轉(zhuǎn)化,再就是要清楚已知條件中提供的角與向量夾角的區(qū)別與聯(lián)系.

技巧與方法:利用a⊥ba·b=0來證明兩直線垂直,只要證明兩直線對應(yīng)的向量的數(shù)量積為零即可.

(1)證明:設(shè)=a,=b,=c,依題意,|a|=|b|,、、中兩兩所成夾角為θ,于是=a-b,=c(a-b)=c·a-c·b=|c|·|a|cosθ-|c|·|b|cosθ=0,∴C1C⊥BD.

(2)解:若使A1C⊥平面C1BD,只須證A1C⊥BD,A1C⊥DC1,

由=(a+b+c)·(a-c)=|a|2+a·b-b·c-|c|2=|a|2-|c|2+|b|·|a|cosθ-|b|·|c|·cosθ=0,得

當(dāng)|a|=|c|時,A1C⊥DC1,同理可證當(dāng)|a|=|c|時,A1C⊥BD,

∴=1時,A1C⊥平面C1BD.

錦囊妙計

1.解決關(guān)于向量問題時,一要善于運(yùn)用向量的平移、伸縮、合成、分解等變換,正確地進(jìn)行向量的各種運(yùn)算,加深對向量的本質(zhì)的認(rèn)識.二是向量的坐標(biāo)運(yùn)算體現(xiàn)了數(shù)與形互相轉(zhuǎn)化和密切結(jié)合的思想.

2.向量的數(shù)量積常用于有關(guān)向量相等,兩向量垂直、射影、夾角等問題中.常用向量的直角坐標(biāo)運(yùn)算來證明向量的垂直和平行問題;利用向量的夾角公式和距離公式求解空間兩條直線的夾角和兩點(diǎn)間距離的問題.

3.用空間向量解決立體幾何問題一般可按以下過程進(jìn)行思考:

(1)要解決的問題可用什么向量知識來解決?需要用到哪些向量?

(2)所需要的向量是否已知?若未知,是否可用已知條件轉(zhuǎn)化成的向量直接表示?

(3)所需要的向量若不能直接用已知條件轉(zhuǎn)化成的向量表示,則它們分別最易用哪個未知向量表示?這些未知向量與由已知條件轉(zhuǎn)化的向量有何關(guān)系?

更多資料
更多課程
更多真題
溫馨提示:因考試政策、內(nèi)容不斷變化與調(diào)整,本網(wǎng)站提供的以上信息僅供參考,如有異議,請考生以權(quán)威部門公布的內(nèi)容為準(zhǔn)!
專注在線職業(yè)教育23年

項(xiàng)目管理

信息系統(tǒng)項(xiàng)目管理師

廠商認(rèn)證

信息系統(tǒng)項(xiàng)目管理師

信息系統(tǒng)項(xiàng)目管理師

信息系統(tǒng)項(xiàng)目管理師

學(xué)歷提升

!
咨詢在線老師!