?2021年10月自考線性代數(shù)02198考前復(fù)習(xí)資料四
摘要:馬上就要進(jìn)行2021年10月自考,各位考生肯定也很緊張,總覺得自己沒有復(fù)習(xí)好。本文提供2021年10月自考線性代數(shù)02198考前復(fù)習(xí)資料四,考生們可以做一下檢驗(yàn)自己的學(xué)習(xí)成果。
線性代數(shù)的自考代碼為02198,下文是希賽網(wǎng)整理的2021年10月自考線性代數(shù)02198考前復(fù)習(xí)資料四,如果對自考線性代數(shù)的真題有需要的考生,可以點(diǎn)擊進(jìn)入【02198-線性代數(shù)】下載歷年真題。
2021年10月自考線性代數(shù)02198考前復(fù)習(xí)資料四
行列式的重點(diǎn)是計(jì)算,利用性質(zhì)熟練準(zhǔn)確的計(jì)算出行列式的值。
矩陣中除可逆陣、伴隨陣、分塊陣、初等陣等重要概念外,主要也是運(yùn)算,其運(yùn)算分兩個(gè)層次,一是矩陣的符號運(yùn)算,二是具體矩陣的數(shù)值運(yùn)算。例如在解矩陣方程中,首先進(jìn)行矩陣的符號運(yùn)算,將矩陣方程化簡,然后再代入數(shù)值,算出具體的結(jié)果,矩陣的求逆(包括簡單的分塊陣)(或抽象的,或具體的,或用定義,或是用公式A-1=1 A*,或A用初等行變換),A和A*的關(guān)系,矩陣乘積的行列式,方陣的冪等也是??嫉膬?nèi)容之一。
關(guān)于向量,證明(或判別)向量組的線性相關(guān)(無關(guān)),線性表出等問題的關(guān)鍵在于深刻理解線性相關(guān)(無關(guān))的概念及幾個(gè)相關(guān)定理的掌握,并要注意推證過程中邏輯的正確性及反證法的使用。
向量組的極大無關(guān)組,等價(jià)向量組,向量組及矩陣的秩的概念,以及它們相互關(guān)系也是重點(diǎn)內(nèi)容之一。用初等行變換是求向量組的極大無關(guān)組及向量組和矩陣秩的有效方法。
在Rn中,基、坐標(biāo)、基變換公式,坐標(biāo)變換公式,過渡矩陣,線性無關(guān)向量組的標(biāo)準(zhǔn)正交化公式,應(yīng)該概念清楚,計(jì)算熟練,當(dāng)然在計(jì)算中列出關(guān)系式后,應(yīng)先化簡,后代入具體的數(shù)值進(jìn)行計(jì)算。
行列式、矩陣、向量、方程組是線性代數(shù)的基本內(nèi)容,它們不是孤立隔裂的,而是相互滲透,緊密聯(lián)系的,例如∣A∣≠0〈===〉A(chǔ)是可逆陣〈===〉r(A)=n(滿秩陣)〈===〉A(chǔ)的列(行)向量組線性無關(guān)〈===〉A(chǔ)X=0唯一零解〈===〉A(chǔ)X=b對任何b均有(唯一)解〈===〉A(chǔ)=P1 P2…PN,其中PI(I=1,2,…,N)是初等陣〈===〉r(AB)=r(B)<===>A初等行變換
I〈===〉A(chǔ)的列(行)向量組是Rn的一個(gè)基〈===〉A(chǔ)可以是某兩個(gè)基之間的過渡矩陣等等。這種相互之間的聯(lián)系綜合命題創(chuàng)造了條件,故對考生而言,應(yīng)該認(rèn)真總結(jié),開拓思路,善于分析,富于聯(lián)想使得對綜合的,有較多彎道的試題也能順利地到達(dá)彼岸。
關(guān)于特征值、特征向量。一是要會(huì)求特征值、特征向量,對具體給定的數(shù)值矩陣,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由給定矩陣的特征值求其相關(guān)矩陣的特征值(的取值范圍),可用定義Aξ=λξ,同時(shí)還應(yīng)注意特征值和特征向量的性質(zhì)及其應(yīng)用,二是有關(guān)相似矩陣和相似對角化的問題,一般矩陣相似對角化的條件。實(shí)對稱矩陣的相似對角化及正交變換相似于對角陣,反過來,可由A的特征值,特征向量來確不定期A的參數(shù)或確定A,如果A是實(shí)對稱陣,利用不同特征值對應(yīng)的特征向量相互正交,有時(shí)還可以由已知λ1的特征向量確定出λ2(λ2≠λ1)對應(yīng)的特征向量,從而確定出A.三是相似對角化以后的應(yīng)用,在線性代數(shù)中至少可用來計(jì)算行列式及An.
將二次型表示成矩陣形式,用矩陣的方法研究二次型的問題主要有兩個(gè):一是化二次型為標(biāo)準(zhǔn)形,這主要是正交變換法(這和實(shí)對稱陣正交相似對角陣是一個(gè)問題的兩種提法),在沒有其他要求的情況下,用配方法得到標(biāo)準(zhǔn)形可能更方便些;二是二次型的正定性問題,對具體的數(shù)值二次型,一般可用順序主子式是否全部大于零來判別,而抽象的由給定矩陣的正定性,證明相關(guān)矩陣的正定性時(shí),可利用標(biāo)準(zhǔn)形,規(guī)范形,特征值等到證明,這時(shí)應(yīng)熟悉二次型正定有關(guān)的充分條件和必要條件。
以上就是本文的全部內(nèi)容了,希賽網(wǎng)還為各位考生提供【希賽自考題庫】【希賽自考真題下載】【自考題庫app下載】三大刷題工具,有需要的考生也可點(diǎn)擊查看。
延伸閱讀
- 2023年10月自考00257票據(jù)法真題
- 2023年10月自考00249國際私法真題
- 2023年10月自考00246國際經(jīng)濟(jì)法概論真題
- 2023年10月自考00245刑法學(xué)真題
- 2023年10月自考00186國際商務(wù)談判真題
- 2023年10月自考00185商品流通概論真題
自考微信公眾號
掃碼添加
自考備考資料免費(fèi)領(lǐng)取
去領(lǐng)取