?2023年西南交通大學希望學院專升本高等數(shù)學(工程類)考試大綱
摘要:2023年西南交通大學希望學院專升本高等數(shù)學(工程類)考試大綱已經(jīng)發(fā)布了,學生可以通過考試大綱了解相關的考試信息,按照考試大綱進行備考等。具體請見下文。
2023年西南交通大學希望學院專升本高等數(shù)學(工程類)考試大綱
考生應理解或了解《高等數(shù)學》中函數(shù)、極限、連續(xù)、一元函數(shù)微分學、—元函數(shù)積分學、向量代數(shù)與空間解析幾何、多元函數(shù)微積分學,無窮級數(shù)、常微分方程的基本概念與基本理論:掌握上述各部分的基本方法.應注意各部分知識的結構及知識的內在聯(lián)系;應具有一定的抽象思維能力、邏輯推理能力、運算能力、空間想象能力:能運用基本概念、基本理論和基本方法正確地推理證明,準確、簡捷地計算;能綜合運用所學知識分析并解決簡單的實際問題。
本大綱對內容的要求由低到高,對概念和理論分為“了解”和“理解”兩個層次:對方法和運算分為“會”、“掌握”和“熟練掌握”三個層次。
考試用時,120分鐘
考試范圍及要求
一、函數(shù)、極限和連續(xù)
(一)函數(shù)
1.理解函數(shù)的概念,會求函數(shù)的定義域、表達式及函數(shù)值。會求分段函數(shù)的定義域、函數(shù)值,并會作出簡單的分段函數(shù)圖像。會建立簡單實際問題的函數(shù)關系式。
2.理解和掌握函數(shù)的單調性、奇偶性、有界性和周期性,會判斷所給函數(shù)的類別。
3.了解函數(shù)之間的關系(定義域、值域、圖象),會求單調函數(shù)的反函數(shù)。
4.理解和掌握函數(shù)的四則運算與復合運算,熟練掌握復合函數(shù)的復合過程。
5.掌握基本初等函數(shù)及其簡單性質、圖象。
6.了解初等函數(shù)的概念及其性質。
(二)極限
1.理解極限的概念,會求數(shù)列極限及函數(shù)在一點處的左極限、右極限和極限,掌握數(shù)列極限存在性定理,了解函數(shù)在一點處極限存在的充分必要條件。
2.了解極限的有關性質,掌握極限的四則運算法則(包括數(shù)列極限與函數(shù)極限)。
3.熟練掌握用兩個重要極限求極限的方法。
4.理解無窮小量、無窮大量的概念,掌握無窮小量與無窮大量的關系,會進行無窮小量階的比較(高階、低階、同階和等價)。會運用等價無窮小量代換求極限。
(三)連續(xù)
1.理解函數(shù)在一點連續(xù)與間斷的概念,會判斷簡單函數(shù)(含分段函數(shù))的連續(xù)性,理解函數(shù)在一點連續(xù)與極限存在的關系。
2.會求函數(shù)的間斷點及確定其類型。
3.掌握閉區(qū)間上連續(xù)函數(shù)的性質,會運用零點定理證明方程根的存在性。
4.理解初等函數(shù)在其定義區(qū)間上連續(xù),并會運用連續(xù)性求極限。
二、一元函數(shù)微分學
(一)導數(shù)與微分
1.理解導數(shù)的概念,了解導數(shù)的幾何意義以及函數(shù)可導性與連續(xù)性之間的關系,會用定義判斷函數(shù)的可導性。
2.會求曲線上一點處的切線方程與法線方程。
3.熟練掌握導數(shù)的基本公式、四則運算法則以及復合函數(shù)的求導方法,會求反函數(shù)的導數(shù)。
4.掌握隱函數(shù)以及由參數(shù)方程所確定的函數(shù)的求導方法,會使用對數(shù)求導法,會求分段函數(shù)的導數(shù)。
5.理解高階導數(shù)的概念,會求初等函數(shù)的高階導數(shù)。
6.理解函數(shù)的微分概念及微分的幾何意義,掌握微分運算法則及一階微分形式的不變性,了解可微與可導的關系,會求函數(shù)的微分。
(二)中值定理及導數(shù)的應用
1.理解羅爾中值定理、拉格朗日中值定理及它們的幾何意義。會用羅爾中值定理證明方程根的存在性。會用拉格朗日中值定理證明簡單的不等式。
2.熟練掌握用洛必達法則求型等未定式的極限。
3.掌握利用導數(shù)判定函數(shù)的單調性及求函數(shù)的單調增、減區(qū)間的方法,會利用函數(shù)的增減性證明簡單的不等式。
4.理解函數(shù)極值的概念,掌握求函數(shù)的極值和最大(小)值的方法,并且會解簡單的應用問題。
5.會判定曲線的凹凸性,會求曲線的拐點。
6.會求曲線的水平漸近線與垂直漸近線。
7.會作出簡單函數(shù)的圖形。
三、一元函數(shù)積分學
(一)不定積分
1.理解原函數(shù)與不定積分的概念,掌握不定積分的性質,了解原函數(shù)存在定理。
2.熟練掌握基本的積分公式。
3.熟練掌握不定積分第一換元法,掌握第二換元法(限于三角代換與簡單的根式代換)。
4.熟練掌握不足積分的分部積分法。
5.會求簡單有理函數(shù)、三角函數(shù)有理式及簡單無理函數(shù)的不定積分。
(二)定積分
1.理解定積分的概念與兒何意義,了解函數(shù)可積的條件。
2.掌握定積分的基本性質。
3.理解變上限的定積分是變上限的函數(shù),掌握對變上限定積分求導數(shù)的方法。
4.熟練掌握牛頓一萊布尼茨公式。
5.掌握定積分的換元積分法與分部積分法。并會證明一些簡單的積分恒等式。
6.理解無窮區(qū)間廣義積分的概念,掌握其計算方法。
7.掌握直角坐標系下用定積分計算平面圖形的面積以及乎面圖形繞坐標軸旋轉所生成的旋轉體體積。
四、向量代數(shù)與空間解析幾何
(一)向量代數(shù)
1.理解向量的概念,掌握向量的坐標表示法,會求單位向量、方向余弦、向量在坐標軸上的投影。
2.掌握向量的線性運算、向量的數(shù)量積以及二向量的向量積的計算方法。
3.掌握二向量平行、垂直的條件。
(二)平面與直線
1.會求平面的點法式方程、一般式方程。會判定兩平面的垂直、平行。
2.會求點到平面的距離。
3.了解直線的一般式方程,會求直線的標準式方程、參數(shù)式方程。會判定兩直線平行、垂直。
4.會判定直線與平面間的關系(垂直、平行、直線在平面上)。
(三)簡單的二次曲面
了解球面、母線平行于坐標軸的柱面、圓錐面、橢球面、拋物面、和雙曲面的方程及其圖形。
五、多元函數(shù)微積分學
(一)多元函數(shù)微分學
1.了解多元函數(shù)的概念、二元函數(shù)的幾何意義及二元函數(shù)的極限與連續(xù)概念(對計算不作要求)。會求二元函數(shù)的定義域。
2.理解偏導數(shù)概念,了解全微分概念,掌握全微分存在的必要條件與充分條件。
3.掌握二元函數(shù)的一、二階偏導數(shù)計算方法。
4.掌握復合函數(shù)一、二階偏導數(shù)的求法(含抽象函數(shù))。
5.會求二元函數(shù)的全微分(含抽象函數(shù))。
6.掌握由方程F(x,y,z)=0所確定的隱函數(shù)z=z(x,y)的一、二階偏導數(shù)的計算方法。
7.會求空間曲線的切線和法平面方程,會求空間曲面的切平面和法線方程。
8.會求二:二元函數(shù)的無條件極值。會應用lagrange乘數(shù)法求解一些最大值最小值問題。
(二)二重積分
1.理解二重積分的概念及其性質。
2.掌握二重積分在直角坐標系及極坐標系下的計算方法與交換積分的次序。
3.會用二重積分解決簡單的應用問題(限于空間封閉曲面所同成的有界區(qū)域的體積、平面薄板質量)。
六、無窮級數(shù)
(一)數(shù)項級數(shù)
1.理解級數(shù)收斂、發(fā)散的概念。掌握級數(shù)收斂的必要條件,了解級數(shù)的基本性質。
2.掌握正項級數(shù)的比較判別法、比值判別法和根值判別法。
3.掌握幾何級數(shù)的斂散性。
4.會使用萊布尼茨判別法。
5.理解級數(shù)絕對收斂與條件收斂的概念,掌握判定任意項級數(shù)絕對收斂與條件收斂的方法。
(二)冪級數(shù)
1.了解冪級數(shù)的概念。
2.掌握冪級數(shù)在其收斂區(qū)間內的逐項求導與逐項積分的性質與方法。
3.掌握求冪級數(shù)的收斂半徑、收斂區(qū)間(不要求討論端點)的方法。
4.會運用的麥克勞林(Maclaurin)展開式,將一些簡單的初等函數(shù)展開為的冪級數(shù)。
七、常微分方程
(一)一階微分方程
1.理解微分方程的定義,理解微分方程的階、解、通解、初始條件和特解。
2.掌握可分離變量方程的解法。
3.掌握一階線性微分方程的解法。
(二)二階線性微分方程
1.了解二階線性微分方程解的結構。
2.掌握二階常系數(shù)齊次線性微分方程的解法。
參考教材:
《高等數(shù)學》上、下冊 同濟大學數(shù)學系編 高等教育出版社
《高等數(shù)學》 主編:董海茵 趙銀善 吉林大學出版社
延伸閱讀
- 四川省普通高校專升本考試要求—計算機基礎
- 四川省普通高校專升本考試要求—大學英語
- 四川省普通高校專升本考試要求—大學語文
- 2023年西南交通大學希望學院專升本考試大綱匯總
- 2023年西南交通大學希望學院專升本綜合英語考試大綱
- 2023年西南交通大學希望學院專升本英美概況考試大綱
專升本微信公眾號
掃碼添加
專升本備考資料免費領取
去領取